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Abstract. The computation language of a DNA-based system consists
of all the words (DNA strands) that can appear in any computation
step of the system. In this work we define properties of languages which
ensure that the words of such languages will not form undesirable bonds
when used in DNA computations. We give several characterizations of the
desired properties and provide methods for obtaining languages with such
properties. The decidability of these properties is addressed as well. As
an application we consider splicing systems whose computation language
is free of certain undesirable bonds and is generated by nearly optimal
comma-free codes.

1 Introduction

DNA (deoxyribonucleic acid) is found in every cellular organism as the storage
medium for genetic information. It is composed of units called nucleotides, dis-
tinguished by the chemical group, or base, attached to them. The four bases,
are adenine, guanine, cytosine and thymine, abbreviated as A, G, C, and T .
(The names of the bases are also commonly used to refer to the nucleotides that
contain them.) Single nucleotides are linked together end–to–end to form DNA
strands. A short single-stranded polynucleotide chain, usually less than 30 nu-
cleotides long, is called an oligonucleotide. The DNA sequence has a polarity: a
sequence of DNA is distinct from its reverse. The two distinct ends of a DNA
sequence are known under the name of the 5′ end and the 3′ end, respectively.
Taken as pairs, the nucleotides A and T and the nucleotides C and G are said
to be complementary. Two complementary single–stranded DNA sequences with
opposite polarity are called Watson/Crick complements and will join together
to form a double helix in a process called base-pairing, or hybridization [9].

In most DNA computations, there are three basic stages which have to be
performed. The first is encoding the problem using single-stranded or double-
stranded DNA. Then the actual computation is performed by employing a suc-
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cession of bio-operations [9]. Finally, the solutions, i.e. the result of the compu-
tation are sequenced and decoded.

In many proposed DNA-based algorithms, the initial DNA solution will
contain some oligonucleotides which represent single “codewords”, and some
oligonucleotides which are strings of catenated codewords. This leads to two
main types of possible undesirable hybridizations. First, it is undesirable for any
DNA strand representing a codeword to form a hairpin structure, which can
happen if either end of the strand binds to another section of that same strand.
Second, it is undesirable for any DNA strand representing a codeword to bind to
either another codeword strand or to the catenation of two codeword strands. If
such undesirable hybridizations occur, they will in practice render the involved
DNA strands useless for the subsequent computations.

To formalize these problems, let us introduce some notations. An alphabet
X is a finite non-empty set of symbols (letters). We denote by ∆ = {A,C,G, T }
the DNA alphabet. A word u over the alphabet X is a sequence of letters and
|u| will denote the length of u, that is, the number of letters in it. By 1 we
denote the empty word consisting of zero letters. By convention, a word u over
the DNA alphabet ∆ will denote the corresponding DNA strand in the 5′ to
3′ orientation. We denote by ←−u the Watson-Crick complement of the sequence
u, i.e., its reverse mirror image. For example, if u = 5′ − AAAAGG − 3′ then←−u = 5′ − CCTTTT − 3′ will be the Watson-Crick complement that would
base-pair to u. By X∗ we denote the set of all words over X , and by X+ the
set of all non-empty words over X . A language (over X) is any subset of X∗.
For a language K, we denote by K∗ the set of words that are obtained by
concatenating zero or more words of K; then, 1 ∈ K∗. We write K+ for the
subset of all non-empty words of K∗.

Let now K ⊆ ∆∗ be a set of DNA codewords. Several types of undesirable
situations can occur with these DNA strands encoding initial data.

v
Fig. 1. Intramolecular hybridization I: uv ∈ K, ←−v being a subword of u.

u

Fig. 2. Intramolecular hybridization II: uv ∈ K, ←−u being a subword of v.
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u

v
Fig. 3. Intermolecular hybridization I: u, v ∈ K, ←−v being a subword of u.

v

u u1 2

Fig. 4. Intermolecular hybridization II: u1, u2, v ∈ K, ←−v being a subword of
u1u2.

Several attempts have been made to address this issue by trying to find sets
of codewords which are unlikely to form undesired bonds in this manner [2],
[5], [4]. For example genetic algorithms have been developed which select for
sets of DNA sequences that are less likely to form undesirable bonds [3], and
combinatorial methods have been used to calculate bounds on the size of a set
of uniform codewords (as a function of codeword length) which are less likely to
mishybridize [11].

In this paper, we continue the approach in [10] where the notion of θ-
compliance has been defined, where θ is an arbitrary morphic or antimorphic
involution. In the particular case when θ is the Watson-Crick complement, a
language is strictly θ-compliant (respectively strictly prefix θ-compliant, suffix
θ-compliant) if situations like the ones depicted in Figure 3 (respectively Fig-
ures 1, 2) cannot occur. [10] studied properties of such θ-compliant languages,
i.e. languages consisting of words with good coding properties. Here we define
the notion of θ-freedom: if θ is the Watson-Crick complement, a language is
θ-free iff situations like the ones depicted in Figure 4 cannot occur.

Section 3 studies θ-freedom and its relation to θ-compliance. It turns out
that, under some conditions, languages that are θ-free are also θ-compliant.

Section 4 studies the question of whether or not, given a set of codewords, we
can constructively decide if the set is θ-compliant or θ-free, i.e., if it has desirable
coding properties.

Section 5 studies under what conditions, if we start with an initial set of
“good” codewords, θ-compliance and θ-freedom are preserved by all intermediate
strands that occur during computations.

With these studies, we attempt to gain a deeper insight into encoding in-
formation in DNA, which will hopefully assist solving this otherwise difficult
problem.
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2 Definitions and Notations

For a set S, we denote by |S| the cardinality of S, that is, the number of elements
in S. The set of non-negative integers is denoted by N. Let X∗ be the free
monoid generated by the finite alphabet X . A mapping α : X∗ → X∗ is called
a morphism (anti-morphism) of X∗ if α(uv) = α(u)α(v) (respectively α(uv) =
α(v)α(u)) for all u, v ∈ X∗. A bijective morphism (anti-morphism) is called an
isomorphism (anti-isomorphism) of X∗.

An involution θ : S → S of S is a mapping such that θ2 equals the identity
mapping, i.e., θ(θ(x)) = x for all x ∈ S. It follows then that an involution θ is
bijective and θ = θ−1. The identity mapping is a trivial example of involution.

If ∆∗ is the free monoid generated by the DNA-alphabet ∆ then two involu-
tions can be defined on ∆∗: the mirror involution µ which is an anti-morphism,
and the complement involution γ which is a morphism ([10]).

Indeed, the mapping γ : ∆ → ∆ defined by γ(A) = T, γ(T ) = A, γ(C) =
G, γ(G) = C can be extended in the usual way to a morphism of ∆∗ that is
also an involution of ∆∗. Obviously, γ is an involution as the complement of the
complement of a sequence equals the sequence itself. This involution γ will be
called the complement involution or simply the c-involution of ∆∗.

Let µ : ∆∗ → ∆∗ be the mapping µ(u) = v defined by

u = a1a2 . . . ak, v = ak . . . a2a1, ai ∈ ∆, 1 ≤ i ≤ k.
The word v is called the mirror image of u. Since µ2 is the identity mapping, µ
is an involution of ∆∗ which will be called the mirror involution or simply the
m-involution of ∆∗. The m-involution is an anti-morphism as µ(uv) = µ(v)µ(u)
for all u, v ∈ ∆∗.

It is easy to see that γ and µ commute, i.e. γµ = µγ, and hence γµ which
will denoted by τ is also an involution of ∆∗. Furthermore τ is an anti-morphism
which corresponds to the notion of Watson-Crick complement of a DNA sequence
and will therefore sometimes be called the DNA involution.

Instead of γ, µ, τ we sometimes use the alternative notation

γ(u) = ū, µ(u) = ũ, τ(u) = γµ(u) =←−u .

Following [10], if θ : X∗ → X∗ is a morphic or antimorphic involution,
a language L ⊆ X∗ is said to be θ-compliant, (prefix θ-compliant, suffix θ-
compliant) iff, for any words x, y, u ∈ X∗,

u, xθ(u)y ∈ L (θ(u)y ∈ L, xθ(u) ∈ L) ⇒ xy = 1.

If, in addition, L ∩ θ(L) = ∅ then the language L is called strictly θ-compliant
(strictly prefix θ-compliant, strictly suffix θ-compliant, respectively).

Note that if the involution θ is the DNA involution, i.e., it represents the
Watson-Crick complement, then a language L being strictly θ-compliant (strictly
prefix θ-compliant, strictly suffix θ-compliant) amounts to the fact that situa-
tions of the type depicted in Figure 3 (respectively Figure 1, Figure 2) do not
occur. Such languages with good coding properties have been studied in [10].
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We close the section with some terminology on codes [8]. A code K is a subset
of X+ satisfying the property that, for every word w in K+, there is a unique
sequence (v1, v2, . . . , vn) of words in K such that w = v1v2 · · · vn. A bifix code
K is a prefix and suffix code; that is, K ∩KX+ = K ∩X+K = ∅.

Every bifix code is indeed a code. An infix code, K, has the property that no
word of K is properly contained in another word of K, that is, K ∩ (X+KX∗ ∪
X∗KX+) = ∅. Every infix code is a bifix code. A comma-free code K is a
language with the property K2 ∩ X+KX+ = ∅. Every comma-free code is an
infix code.

3 Involution-Freedom and Involution-Compliance

In this section we define the notion of an involution-free language which formal-
izes the situation depicted in Figure 4. Moreover, this notion extends the concept
of comma-free code, [13], in the same fashion that involution-compliance extends
the concept of infix code.

We define the notion of a θ-free language (Definition 1) and establish rela-
tions between θ-freedom and θ-compliance (Lemma 1). We also establish some
properties of θ-free languages. For example, Proposition 1 states that if a set of
codewords K is strictly θ-free then the set consisting of arbitrary catenations of
codewords from K will be strictly θ-free as well. Proposition 2 states that if a
language is dense (it contains all possible sequences in X∗ as subsequences of
some of its strands), then it cannot be strictly θ-compliant or θ-free.

To aid the intuition, Propositions 3, 6, 7, 8 are proved for the particular case
of the complement involution even though the results hold for the more general
case of an arbitrary morphic involution.

After some examples of complement-free languages, Propositions 3, 6 bring
together the notions of complement-compliance and complement-freedom. As
it turns out, under some conditions, languages that avoid undesirable bindings
of the type in Figures 1–3 avoid also situations of the type in Figure 4, and
vice-versa.

Definitions 3 and 4 introduce the notions of complement-reflective respec-
tively anti complement-reflective languages, which are generalizations of the
notions of reflective and anti-reflective languages, [13], and relates them to
complement-freedom.

This paves the way to methods of constructing complement-free languages
as the one described in Proposition 7.

Proposition 8 gives a sufficient condition under which the catenation of two
languages is complement-free.

Propositions 9, 10 address similar problems but this time for the anti-morphic
involution case which is the type that the DNA Watson/Crick involution belongs
to. Because of the additional “flipping” complication that such an involution
entails, the results are slightly different.

Definition 1. Let θ be an involution of X∗. A language K is called θ-free if
K2 ∩ X+θ(K)X+ = ∅. If, in addition, K ∩ θ(K) = ∅ then K is called strictly
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θ-free. For convenience, we agree to call K strictly θ-free when K \{1} is strictly
θ-free.

As an example, consider the DNA involution τ of ∆∗ and the language ACC∆2.
Then, ACC∆2ACC∆2 ∩ ∆+(∆2GGT )∆+ = ∅. Hence, ACC∆2 is τ -free and,
in fact, strictly τ -free. The same language is strictly free for the complement
involution as well. On the other hand, A∆2A is strictly τ -compliant but not
τ -free, as ACTAATAA ∈ (A∆2A)2 ∩∆+τ(A∆2A)∆+.

Lemma 1. Let θ be a morphic or antimorphic involution and let K be a non-
empty subset of X+.

(i) If K is θ-free then both K and θ(K) are θ-compliant.
(ii) If K is strictly θ-free then K2 ∩X∗θ(K)X∗ = ∅.

Proposition 1. Let θ be a morphic or antimorphic involution and let K be a
non-empty subset of X+. If K is strictly θ-free then also K+ is strictly θ-free.

It is shown next that the properties of strict θ-compliance and strict θ-
freedom impose restrictions on the words of a language in terms of density and
completeness. A language L is called dense, [1], if every word is a subword of
some word of L; that is, L ∩X∗wX∗ �= ∅ for every w ∈ X+. The language L is
complete if L∗ is dense, [1].

Proposition 2. Let θ be a morphic or antimorphic involution and let K be a
non-empty subset of X+.

(i) If K is dense then K is not strictly θ-compliant.
(ii) If K is complete then K is not strictly θ-free.

To make results more intuitive, we will prove the following four propositions
for the particular case where θ is the complement involution. Note that the
results can be generalized to refer to any arbitrary morphic involution.

There are many examples of complement-free languages. L = AC+A is an
infinite complement-free language as

{ACn1AACn2A| n1, n2 > 0} ∩∆+TG+T∆+ = ∅.

For any L1 ⊆ AC∗ and L2 ⊆ C+A, L1L2 is a complement-free language.
Indeed, L1L2 = AC+A which is complement-free.

Every subset of a complement-free language is itself complement-free.
Let L ⊆ ∆+ be a finite language and let m =max{|u| | u ∈ L}. Then

L′ = ACmLACm is complement-free. Indeed, assume L′2∩∆+L′∆+ �= ∅. Then,
ACmw1AC

mACmw2AC
m =α1TG

mw3TG
mα2 for some w1, w2, w3 ∈ L, α1, α2 ∈

∆+. This implies TGm is a subword of w1 or w2 – contradiction as |w1|, |w2| ≤ m.
An example of a language L satisfying L ∩ L = ∅ is ∆∗{A,C}.
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For a language L ⊆ X+ denote by

Lpref = {x ∈ X+| xy ∈ L for some y ∈ X+}

Lsuff = {y ∈ X+| xy ∈ L for some x ∈ X+}
the language of non-empty proper prefixes of L and the language of non-empty
proper suffixes of L respectively.

Proposition 3. Let L ⊆ X+, L �= ∅, be a language. The following statements
are equivalent:

(1) L is complement-free.
(2) L is c-compliant and L ∩ LsuffLpref = ∅.
(3) L is c-compliant and L2 ∩ LprefLLsuff = ∅.
(4) L is complement-free.

Definition 2. Let θ : X∗ −→ X∗ be a morphic or antimorphic involution. For
a non-empty language L ⊆ X+ define
Ls = {z ∈ X+| ux ∈ L, xz ∈ θ(L) for some u, x ∈ X+},
Lis = {x ∈ X+| wx ∈ θ(L), xv ∈ L for some w, v ∈ X+},
Lp = {x ∈ X+| xv ∈ θ(L), vy ∈ L for some y, v ∈ X+},
Lip = {x ∈ X+| ux ∈ L, xv ∈ θ(L) for some u, v ∈ X+}.
Note that in the particular case, where we talk about a morphic involution

we have that Lis = θ(Lip). Indeed x ∈ Lis means wx ∈ θ(L), xv ∈ L for some
w, v ∈ X+ which means that θ(w)θ(x) ∈ L, θ(x)θ(v) ∈ θ(L) which, in turn,
means that θ(x) ∈ Lip, that is, x ∈ θ(Lip).

Proposition 4. Let L ⊆ X+ be a non-empty language and θ : X∗ −→ X∗ be
an antimorphic involution. Then θ(L)s = θ(Lp) and θ(L)p = θ(Ls).

Proposition 5. Let L ⊆ X+ be a non-empty language and θ : X∗ −→ X∗ be a
morphic involution. Then θ(L)s = θ(Ls) and θ(L)p = θ(Lp).

Take the particular case where θ is the complement involution.

Proposition 6. Let L ⊆ X+ be a non-empty language. Then L is complement-
free if and only if L is complement-compliant and one of the following conditions
hold:

(1) Ls ∩ Lis = ∅,
(2) Lp ∩ Lip = ∅,
(3) L ∩ LpLp = ∅,
(4) L ∩ LsLs = ∅.

Note that Proposition 6 holds also if we replace the complement involution
with an arbitrary morphic involution.
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Definition 3. A language L ⊆ X+, L �= ∅ is called complement-reflective iff for
all x, y ∈ X+ we have that xy ∈ L implies yx ∈ L.

Definition 4. A language L ⊆ X+, L �= ∅ is called anti complement-reflective
iff for all x, y ∈ X+ we have that xy ∈ L implies yx �∈ L.

Note that every complement-free language is anti complement-reflective. In-
deed, if for a complement-free language L we would have xy ∈ L and yx ∈ L for
some x, y ∈ X+ then

(yx)(yx) = yxyx = y(xy)x ∈ X+LX+ ∩ L2

which violates the condition of complement-freedom.
However, one can find anti complement-reflective languages that are not

complement-free. Indeed, take L = {AnT 2n| n ≥ 1} over the alphabet ∆ =
{A,C,G, T } with the usual complement function. Then L is anti complement-
reflective but not complement-free. Indeed, xy ∈ L implies xy = AnT 2n for some
n ≥ 1. For yx to belong to L, it must be the case that x ∈ A+ and y ∈ T+.
Then yx = A2nT n �∈ L therefore L is anti complement-reflective.

To show that L is not complement-free, take u1u2 ∈ L, that is, u1u2 =
AnT 2nAmT 2m for some n,m ≥ 1. As it is possible to find some indices n,m, p
such that v ∈ L, v = ApT 2p and v = T pA2p a subword of u1u2, it results that L
is not complement-free.

In general the concatenation of two complement-free languages may not be
complement- free. For example, take L1, L2 ⊆ ∆+,

L1 = {CACA,AC}, L2 = {TGTG,GT }.

Both L1 and L2 are complement-free. On the other hand L1L2 contains the word
u = CACATGTG therefore we have that uu = CACATGTGCACATGTG ∈
(L1L2)2 and the word v = ACGT ∈ L1L2 has the property that v = TGCA is
a subword of uu. This means that L1L2 is not complement-free.

Nevertheless, for a given finite language L ⊆ ∆+ we can always find a word
u ∈ ∆+ such that uL is complement-free.

Indeed, if L = {u1, u2, . . . , un} is a finite language and m =max{|u| | u ∈ L}
then for the word u = Am+1C, m ≥ 1 the language uL is complement-free.

Take α1α2 ∈ uLuL. Then α1α2 = Am+1CuiA
m+1Cuj for some 1 ≤ i, j ≤ n.

Consider α ∈ uL. Then α = Tm+1Guk for some 1 ≤ k ≤ n. The only possibility
for α to be a subword of α1α2 would be that Tm+1G is a subword of ui or of uj

which is impossible because of the way m has been defined. Consequently, uL is
complement-free.

Proposition 7. For any finite language L ⊆ ∆+ there exists an infinite lan-
guage R ⊆ ∆+ such that RL is a complement-free language.

The next question to address is: given two languages A,B ⊆ X+, when is
AB a complement-free language?
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Proposition 8. Let A,B ⊆ X+ be two non-empty languages. Assume that A∩
B = ∅ and that A ∪ B is complement compliant. If As ∩ Bp = ∅ then AB is a
complement-free language.

Corollary 1. Let A,B ⊆ X+ be two non-empty languages. If A ∪ B is strictly
complement compliant and As ∩Bp = ∅ then AB is complement free.

Remark that the preceding proposition and corollary hold also for any arbi-
trary morphic involution, not only for the complement involution.

The case of antimorphic involutions, i.e., of involutions of the type of the
DNA involution, is slightly different.

Proposition 9. Let θ : X∗ −→ X∗ be an antimorphic involution and ∅ �= L ⊆
X+ be a language. Then L is θ-free if and only if L is θ-compliant and one of
the following conditions hold:

(1) Ls ∩ Lis = ∅,
(2) Lp ∩ Lip = ∅,
(3) L ∩ θ(Ls)Lp = ∅,
(4) L ∩ Lsθ(Lp) = ∅.

Proposition 10. Let A,B ⊆ X+ be two non-empty languages and θ : X∗ −→
X∗ be an antimorphic involution. Assume, furthermore, that A and B are strictly
θ-compliant and A∪B is θ-compliant. If Bs ∩ θ(As) = Ap ∩ θ(Bp) = ∅ then AB
is a θ-free language.

4 Decidability Issues

Given a family of sets of codewords, we ask if we can construct an effective
algorithm that takes as input a description of a set of codewords from the given
family and outputs the answer yes or no depending on whether or not the set is
θ-free or θ-compliant (has good encoding properties). If such an algorithm exists,
the question is deemed “decidable,” otherwise it is “undecidable.” This section
considers the problem of deciding τ -compliance and τ -freedom where τ is the
DNA involution. As in the case of infix and comma-free codes — see [8] — it turns
out that these properties are decidable for regular languages but undecidable for
context-free languages. We use regular expressions to represent regular languages
and context-free grammars for context-free languages. If E is a regular expression
(context-free grammar), L(E) denotes the language represented by (generated
by) E.

Proposition 11. Let τ be the DNA involution. The following two problems are
decidable.

1. Input: A regular expression E.
Output: YES or NO depending on whether L(E) is τ-free.
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2. Input: A regular expression E.
Output: YES or NO depending on whether L(E) is τ-compliant.

Proposition 12. Let τ be the DNA involution. The following problems are un-
decidable:

1. Input: A context-free grammar F .
Output: YES or NO depending on whether or not L(F ) is τ-free.

2. Input: A context-free grammar F .
Output: YES or NO depending on whether or not L(F ) is τ-compliant.

5 Splicing Systems That Preserve Good Encodings

The preceding sections studied conditions under which sets of DNA codewords
have good encoding properties, like DNA compliance and τ -freedom, where τ is
the DNA involution. The next question is to characterize initial sets of codewords
having the additional feature that the good encoding properties are preserved
during any computation starting out from the initial set. As a computational
model we have chosen the computation by splicing [7,12,9]. Proposition 14 states
that if the splicing base (initial set of codewords) is strictly θ-free then all the se-
quences that may appear along any computation will not violate the property of
θ-freedom. Proposition 15 is a stronger result stating that for any computational
system based on splicing one can construct an equivalent one with “good,” i.e. θ-
compliance and θ-freedom properties, being preserved during any computation.
Finally, Proposition 16 provides a method of construction of a strictly θ-free code
that can serve as splicing base, i.e. initial soup, for a computation. Moreover, it is
proved that from the point-of-view of the efficiency of representing information,
the constructed code is close to optimal.

A multiset M over an alphabet Σ is a collection of words in Σ∗ such that a
word can occur in M more than once. More formally, a multiset M is a mapping
of Σ∗ into N such that M(w) is the number of copies of the word w in the
multiset. For a multiset M , we write supp (M) to denote the set of (distinct)
words that occur in M ; that is, supp (M) = {w ∈ Σ∗ | M(w) > 0}. A splicing
system — see [9] — is a quadruple γ = (Σ, T,A,R) such that Σ is an alphabet,
T is a subset of Σ, the set of terminal symbols, A is a multiset over Σ, the initial
collection of words, and R is a set of splicing rules of the form α1#β1$α2#β2

with α1, α2, β1, β2 being words in Σ∗. For two multisets M and M ′ we write
M =⇒γ M

′, if there is a splicing rule α1#β1$α2#β2 in R and two words in
M of the form x1α1β1y1 and x2α2β2y2 such that M ′ is obtained from M by
replacing those words with x1α1β2y2 and x2α2β1y1 – see [9]. The language, L(γ),
generated by a splicing system γ = (Σ, T,A,R) is the set {w ∈ T ∗ | ∃M, A =⇒γ

M, w ∈ supp (M)}. The computation language of γ is the set of words over Σ
that can appear in any computation step of γ; that is, the language

{w | w ∈ supp (M) and A =⇒∗
γ M , for some multiset M}



Coding Properties of DNA Languages 67

Note that the language generated by γ is a subset of the computation language
of γ.

When the computation language of a splicing system involves only symbols
of the alphabet ∆, with the usual functionality of these symbols, one wants to
prevent situations like the ones described in the introduction and this requires
choosing languages with certain combinatorial properties. In this section, we
consider a type of splicing systems in which only symbols of the alphabet ∆ are
used and require that the language of computation of such systems is strictly
θ-free, where θ is a morphic or antimorphic involution. To this end, we utilize
Proposition 1 by requiring that the computation language is of the form K∗ for
some strictly θ-free subset K of ∆+. Moreover, we require that K is a splicing
base, as defined below, to ensure that, after performing a splicing operation
between two words in K∗, the resulting words are still in K∗

Definition 5. A splicing base is a set of words K such that, for all x1, x2, y1, y2 ∈
∆∗ and for all v1, u1, v2, u2 ∈ K∗ with |v1u1| > 0 and |v2u2| > 0, if x1v1u1y1,
x2v2u2y2 ∈ K∗ then x1v1u2y2, x2v2u1y1 ∈ K∗.

In the following lemma it is shown that the splicing base condition is equiv-
alent to the following:

(CK) For all x ∈ ∆∗ and for all u ∈ K, if xu is a prefix of K∗ then x ∈ K∗ and
if ux is a suffix of K∗ then x ∈ K∗.

Remark: A splicing base is not necessarily a code. For example, K = {A,A2}
is not a code but it is a splicing base.

Lemma 2.

(i) Condition (CK) implies the following: For all x ∈ ∆∗ and for all v ∈ K+, if
xv is a prefix of K∗ then x ∈ K∗, and if vx is a suffix of K∗ then x ∈ K∗.

(ii) A set of words K is a splicing base if and only if (CK) holds.
(iii) Every splicing base which is a code is a bifix code.
(iv) Every comma-free code is a splicing base.

We define now a special type of splicing systems that involve only symbols of
the alphabet ∆.

Definition 6. Let K be a splicing base. A K-based splicing system is a quadru-
ple β = (K,T,A,R) such that T ⊆ K, A is a multiset with supp (A) ⊆ K∗,
and R is a subset of K∗#K∗$K∗#K∗ with the property that v1#u1$v2#u2 ∈ R
implies |v1u1| > 0 and |v2u2| > 0.

For two multisets M and M ′, the relationship M =⇒β M
′ is defined as in the

case of ordinary splicing systems – see [9]; that is, M ′ is obtained from M by
applying a splicing rule to two words in supp (M). The language L(β) generated
by a K-based splicing system β is the set {w ∈ T ∗ | ∃M,A =⇒∗

β M and
w ∈ supp (M)}. The computation language of the system β is the set {w ∈ ∆∗ |
∃M,A =⇒∗

β M and w ∈ supp (M)}. As shown next, this language is a subset of
K∗.
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Proposition 13. For every splicing base K and for every K-based splicing sys-
tem β, the computation language of β is a subset of K∗.

Proposition 14. Let θ be a morphic or antimorphic involution and let β be a
K-based splicing system, where K is a splicing base. If K is strictly θ-free then
the computation language of β is strictly θ-free.

In the rest of the section we consider the question of whether an arbitrary
splicing system γ can be translated to a K-based splicing system β over ∆ such
that the computation language of β is strictly θ-free and the languages generated
by β and γ are isomorphic.

Definition 7. Let θ be a morphic or antimorphic involution of ∆∗ and let K
be an infinite family of splicing bases such that every splicing base in K is a
strictly θ-free code. The involution-free splicing class Cθ,K is the set of all K-
based splicing systems, where K ⊆ K ′ for some K ′ ∈ K.

Proposition 15. Let Cθ,K be an involution-free splicing class and let Σ be an
alphabet. For every splicing system γ = (Σ, T,A,R) there is a K-based splicing
system β = (K,F,B, P ) in Cθ,K and an isomorphism f : T ∗ → F ∗ such that
the computation language of β is strictly θ-free and L(β) = f(L(γ)).

We close the section with a simple construction of an infinite comma-free
code, Km,∞, which is strictly free for the DNA involution τ . By Lemma 2 (iv),
the code is a splicing base as well. Moreover, we define an infinite family {Km,n |
n ∈ N} of finite subsets of Km,∞ whose information rate tends to (1 − 1/m).
The involution τ and the family {Km,n | n ∈ N} define a τ -free splicing class
which can be used to ‘simulate’ every splicing system according to Proposition
15. The fact about the information rate of the codesKm,n concerns the efficiency
(or redundancy) of these codes when used to represent information. In general,
the information rate of a finite code K over some alphabet X is the ratio

log|X| |K|(∑
v∈K |v|

)
/|K|

When that rate is close to 1, the code is close to optimal.

Proposition 16. Let m and n be non-negative integers with m > 1, let Km,∞ =
AmT (∆m−1T )∗Cm, and let Km,n = ∪n

i=0A
mT (∆m−1T )iCm. Then,

(i) Km,∞ and, therefore, Km,n are comma-free codes and strictly τ-free, where
τ is the DNA involution

(ii) The information rate of Km,n tends to (1− 1/m) as n→∞.
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